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Received 10 July 1990 

Abstract. Withinthe framework ofthe Fockspace formalism ofthe non-relativistic quantum 
field theory the problem of hidden variables is studied. I t  is shown that one can C O I I S ~ ~ U E ~ ,  

both for feermionic and bosanic Fock spaces, a local completely causal underlying theory 
which reproduces all quantum probabilities. This is done by suitable generalization of the 
probability concepts. 

1. Introduction 

It is a well known fact that quantum mechanical stochasticity can be interpreted as a 
consequence of a lack of knowledge about some ‘hidden variables’ of the physical 
system [ I ,  21. More precisely, it is possible to introduce a hidden variables space R 
with the following properties: 

(i) if a measurement arrangement and the point o E R are given, then the measure- 
ment result for an individual system is completely determined; 

(ii) for each statistical operator p in the Hilbert state space, there is a probability 
measure p,, on R such that the mean value (C?),, = Tr(C?p) of an observable a* in p can 
be computed in terms of R and pP. 

However, each subquantum theory of the kind mentioned must be non-local, 
because any local theory satisfies the Bell inequalities [3], which quantum mechanics 
violates. 

It is very important to point out that this last statement is true in the framework 
of Kolmogorovian probability and it is not true in the framework of some more general 
probability concepts; according to Pitowsky [4] and Gudder [5,6], generalization of 
probability allows Bell inequalities to be overcome in some special cases. 

This paper is closely related to this line of thinking. Its aim is to show that the Bell 
inequalities argument can be completely overcome by the use of certain generalizations 
of probability theory. In other words, there is still a possibility of the existence of a 
consistent local causal subquantum theory that is in agreement with quantum 
mechanics. We show this explicitly, by constructing an example of such a theory based 
on a ‘contextual’ modification of classical statistics. 

Let us outline the contents of this paper. 
In  section 2 we introduce the quantum structure with which we are dealing, in 

particular the quantum representatives of the measurement arrangements. For a descrip- 
tion of the quantum level, we choose the Fock-space formalism. 

In  section 3 we introduce, motivated by the construction of Gudder [2], the space 
R. It is natural to interpret the points of this as possible subquantum states of the 
quantum field. As we shall see, this interpretation is compatible with the requirements 
of (subquantum) locality. 
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In section 4 we analyse the possibility of the lack-of-knowledge interpretation of 
the quantum states. We show that, within the framework of the mentioned modification 
of statistics, all quantum states can be interpreted in such a manner. 

2. The quantum structure 

The main subject of our discussion is the quantum field whose quanta are objects 
existing in the Euclidean three-space E’. Their internal degrees of freedom are represen- 
ted by some finite-dimensional Hilbert space W. 

The Hilbert space of all one-panicle states is X = L2(E’ ,  W), that is, the space of 
all square-integrable functions f: E’+  W with a scalar product given by (f; g )  = 
J(f(x), g(x)), where (,) denotes the scalar product in W For the Hilbert space H of 
all quantum states of the field, we take the Fock (bosonic or  fermionic) Hilbert space 
associated with X .  

For each open set U G E’, let X u  be the Hilbert space of one-particle states which 
are completely localized in U (actually, X u  = L2( U, W ) )  and H,, the corresponding 
Fock space. The space H ,  is a subspace of H. Also, if U and V are disjoint open 
subsets of E’, then there is a natural isomorphism F U , V : H u , . + H U O H , .  More 
generally, each orthogonal decomposition of the one-particle Hilbert space induces 
canonically a tensor decomposition of the whole Fock space (see the appendix). 

We shall assume that simple quantum measurements are performed in open con- 
nected and bounded regions in E’. Let T be the family of all regions of this kind. For 
reasons of simplicity, we shall confine ourselves to complete local observables with 
purely discrete spectra. More general cases can be treated similarly. In other words, 
for the representatives of quantum measurements performed in some region U E T, we 
take the decompositions of HU into orthogonal sums of one-dimensional subspaces. 
Equivalently, we can say that simple quantum measurements performed in U are 
represented by maximal atomic Boolean sub-u-algebras of the projector lattice P( H,,) .  

Of course, we have to consider the coincidence measurements as well. We shall 
suppose that each coincidence measurement is composed from simple measurements 
performed in regions U,, . . . , U, E T with mutually disjoint closures. If local measure- 
ments are coincidentally performed in such regions U,, . . . , Uk E r and are represented 
by maximal atomic Boolean sub-U-algebras B,  c P (  H , , ) ,  . . . , BA 5 P ( H , , ) ,  then for 
the representative of the coincidence measurement we can take the set { B , ,  . . . , E A ) .  

Let S be the collection of all such sets {E , ,  , . . , BA}. The elements of S we shall 
call contexts. Representatives of simple quantum measurements, that is elements of 
the form { E } ,  we shall call local contexts. The contexts are in one-one correspondence 
with the decomposable maximal atomic Boolean subalgebras of P ( H , , ,  u u A )  = 
P( Hu,O. . .OH,,&): { B , ,  . . . , BA}- B ,  0. . .0 Bk. Also, we can naturally embed these 
structures into the whole projector lattice P ( H )  with the help of the decomposition 
H = H , , @ . .  .OH,,OH’ associated with the orthogonal decomposition X = X u , @  
. . . @ X , , @ X ’ .  

3. The subquantum space 

Now, we construct the subquantum space. For a given local context B, the set of all 
atoms of B is denoted by ZR. Let 0 = ItH Z,, where the product is taken over all local 
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contexts. Consider the family P of all subsets A of fl of the form A = v ; , ’ , . . . , ~ ~ ( A ’ ) ,  
where { E , ,  . . . , E J  E S, A‘ 5 Z,, x . . . x Z,, and T, ,,.,,, : fl + ZB, x . . . x Z,, is the natural 
projection. For each fixed = { E , ,  . . . , Bp} E S let PB be the following subfamily of P: 

The most important properties of the pair (fl, ( P R ;  BES}) are: 
(i) for each BE S, the family Pg is a Boolean u-algebra of subsets of il and 0, R E  P& 
(ii) if E, G B,, then PR, e Pfi,. 
As we mentioned before, each context B = {E,, . . . , Ek} E S can be naturally viewed 

as  a Boolean sub-u-algebra of the projector lattice P (  H ) .  In terms of this identification, 
subsets of Z,, x . . . x Z,, are in one-one correspondence with projectors in B. In 
particular, points of Z,, x . . . x Zn, correspond to the atoms of B. For each S e  
Z8, x . . . x Z,, , we denote by cfi(S) the corresponding element of B. 

The just constructed object (fl, {P,T; B E S)) plays the role of the subquantum space 
in our theory. We interpret the points of R as possible individual quantum field 
configurations. It is then natural, in the sense of the construction (O , {Pf i ;  BES}),  to 
formulate the following actualization of the quantum properties. 

Postulate. If the context B = {E,, . . . , BJ is chosen and if the quantum field is in the 
subquantum state  WE^, then the elementary local quantum properties of w in the 
context B are respectively 7 i B , ( w ) ,  . . . , P”, (w) .  

The postulate preserves locality in the sense that actualization of a local quantum 
property in a given subquantum state depends on the corresponding local context only. 

According to this postulate, the sets belonging to the family P a r e  those and only 
those which can be defined by one measurement context only. Naturally, this is the 
domain of the quantum description. Consequently, each set A c  P can be interpreted 
as a projector c ( A )  in H. More precisely, for A E P we consider a context B = 
(E,, , , . , Bk) E S with the property A E P R .  Then we define c ( A )  = c , ~ [ v ~ , .  . . ,BL(A)].  

A consequence of this definition is that for each B E  S, the ‘quantum interpretator’ 
map c : P +  P ( H )  is an isomorphism of Pe and (viewed here as a Boolean sub-u- 
algebra of the projector lattice P ( H ) ) .  

4. The lack of knowledge interpretation of the quantum probabilities 

In  the background of all hidden variable approaches to quantum theory, there is the 
lack of knowledge interpretation of the quantum probabilities. The simplest and the 
best known way of describing lack of knowledge is the classical (Kolmogorovian) 
probability theory. To be concrete, we consider the triplet ( X ,  T, f i )  where X is a 
non-empty set, T is a Boolean u-algebra of subsets of X such that 0, X E T and 
I * :  T + [ O ,  I ]  is a positive normalized ( f i ( X )  = I )  r-additive function (probability 
measure). We then interpret the points of X as elementarv events and the sets belonging 
to T a s  events rhar can be acrualized in thecorrsideredsituafion. In each singleexperiment 
each event A E  T may be actualized or not, and p ( A )  is the probability of its actualiz- 
ation. 

Let us now discuss how this concept can be justified in the present subquantum 
approach. 
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First of all, an important point is that we have to consider only 'the quantum 
stochasticity' that is, there are no 'non-quantum' events that have probabilities which we 
should interpret. In  each quantum experiment only the quantum events can be actualized. 
From this point of view, it is natural to take the family P (which is not a Boolean 
u-algebra) to be the domain of all probability measures. 

Secondly, the events that can be actualized in a given context B E  S are those 
belonging to the Boolean u-algebra P s .  When B E  S is specified, the classical statistics 
must be used. We think that this is sufficient motivation for the following definition. 

Definition. A probability measure on (R, { P H  ; B E S } )  is a map p : P +  [0,1] with the 
property that its restriction to each Ps is an ordinary probability measure. 

It is easy to see that each point w E Cl canonically determines the probability measure 
6, on(R,{P,;  B E S } ) :  & , ( A ) = K , , ( w ) ,  where ~, , isthecharacterist icfunctionofAtP. 
The probability measure 8, is concentrated at the point w and corresponds to the 
situations in which w is completely known. 

On the other hand, each statistical operator p in H gives rise to a probability measure 
P,, on (a,{&; B E S ) ) :  p , M = T r ( p c ( A ) ) .  

Confirming that the notion of the probability measure on (R, [PB ; B E  S } )  is the 
natural framework for describing lack of knowledge about points w E R, we can 
summarize our discussion in the following theorem. 

Theorem. The triplet ((0, { P o ;  B E S } ) ,  P, c )  is a local hidden variable theory for the 
quantum structure described by (E ' ,  X ,  H, { H u  ; U E T}). 

5. Concluding remarks 

The most important result of this article is the theorem establishing that the modification 
of the probability concepts enables one to avoid, at the formal level, arguments of the 
type of the Bell inequalities [3] against the expounded local causal hidden variables 
theory. 

Avery important property of the constructed subquantum theory is that the quantum 
events (projectors in H )  can be interpreted in terms of a only if, in addition, the 
corresponding measurement context is specified. In other words,for a given w E R we 
may have two contexts B,  and B2 such that a quantum event P occurs in w,  within 
the context B , ,  and does not occur in w within the context B2.  This is unavoidable, 
because a hidden variable theory without this property is not possible according to 
the proofs of Gleason [7] and Bell [SI, and of Kochen and Specker [9]. But,as we 
mentioned before, if we measure some local observable, for example a projector P E-H" 
in some region U E T, on the system in the subquantum state w E 0, the value of P in 
w depends on the local measurement context in U only. Therefore, we are dealing 
with local contextuality. 

The theory presented admits a relativistically covariant formulation. A solution of 
this problem is presented in [IO], within the framework of algebraic quantum field 
theory. 

Acknowledgments 

I would like to thank Professors Milan VujiSi and Fedor Herhut for helpful discussions. 



A Fork-space theory of local hidden variables 683 

Appendix 

For the reader's convenience, a proof of the decomposition property of Fock spaces 
that we used in  the text is given. 

Let X he a separable Hilbert space and H the bosonic or the fermionic Fock space 
associated with X :  H =X?& S ( X x )  (in the bosoniccase) and H =Zy==, A ( X k )  (in the 
fermionic case), where S ( X x )  denotes the subspace of all symmetric vectors of the 
kth tensor power X x  of X and A ( X * )  denotes the subspace of all antisymmetric 
vectors of xk .  

With each $ E  X we can canonically associate an annihilation and (its adjoint) 
creation operator a*($) and a* ' (&) in  H.  These operators satisfy the following relations: 

a*($jIO)= 0 for each & E  X ,  where 10) is the vacuum state in H 

[ a * ( $ , ) ,  a * ( * J L = O  for each c, , c2 E C and $2 E X .  

Now, let us suppose that the space X is decomposed into a direct sum of two 
orthogonal subspaces X ,  and X , .  Let H ,  and H ,  be the Fock spaces associated with 
X ,  and X ,  and $ , + a * , ( $ l )  and $,+ a*,(&,) the corresponding annihilation operators 
in H ,  and H 2 .  For each $ E X  we define the operator b ( $ )  in  H , O H , :  

&*j = a*d*,)OL+aOa*2($2). 
Here, $=$ ,+g2 ,  ~ J J , ~ E X , , ~ ,  a =  I ,  in the bosonic case and u = e x p ( i ~ N , )  in the 

fermionic case, where N ,  is the correseonding particle number operator. One can 
easily show that the operators b ( $ )  and bf($) satisfy the relations (AI)  with lO),OlO), 
as a vaccum state. With the help of these relations, it can be shown that the relation: 

b ^ + ( & , ) . . .  ~ + ~ $ k ~ l o ~ , @ l o ~ 2 ~  a*+(*,)  .. . i + ( & X ) l O )  

cpnsistently and uniquely defFes a," isomorphism p :  H , O H , -  H with the property 
FIO),O10),=10) and a'(&)=Fb(&)F- ' ,  for each $ E X .  
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